
PICAXE-28X1 (OCR / AQA ASSEMBLER)

revolution Revolution Education Ltd.     Email: info@rev-ed.co.uk   Web: www.picaxe.co.uk Version 1.4 03/10 PICAXE_OCR.PMD

Programming PICAXE-28X1 with OCR / AQA Assembler Code:
Many schools teaching OCR and AQA A-Level Electronics have asked if it is possible to program their existing

PICAXE chips using the ‘generic assembler code’ specified on these courses. Revolution Education have therefore

developed a special free compiler for this purpose. Assembler programs can also be simulated on screen before

download to the real chip.

Instructions to enable the OCR/AQA compiler in the free PICAXE Programming Editor software (Windows):

1) Ensure you are using version 5.2.10 or later (Help>About menu). Update is free from www.picaxe.co.uk

2) From the View>Options>Mode menu select the PICAXE-28X1 chip type

3) Click the ‘Advanced’ button that appears beside the chip type

4) Enable the OCR or AQA option as appropriate.

The  special PICAXE-28X1 compiler simply ‘adds’ the assembler commands to the normal PICAXE compiler, so

BASIC programming (and test features such as ‘debug’) can still be used on assembler enabled computers.

Please see the following sections for notes on both the OCR and AQA command sets.

OCR Assembler Notes:
Please see the PICAXE manual for the normal PICAXE download circuit,

which is not changed for OCR use. Please note that, as with most

commercial compilers, hex numbers should be preceded with 0x or $

(see above). Registers s0 to s7 are predefined for immediate use (PICAXE

b0 to b7), as are the i/o ports Q (PICAXE outpins) and I (PICAXE pins).

Note that the PICAXE chip does not operate at the same speed as a PIC programmed in

raw assembler code. However PICAXE is still a very convenient and low cost method to

teach the OCR A2 requirements.

All the OCR defined assembler commands listed overleaf are included. In

addition these 3 subroutines are predefined:

readtable - copies the byte in the lookup table pointed at by

S7 into S0. The lookup table is labelled table: when

S7=0 the first byte from the table is returned in S0

wait1ms – wait 1 ms before returning

readadc – returns a byte in S0 proportional to the voltage at ADC (ADC0)

The following extra subroutines are also predefined for extension work (not in specification):

wait10ms – wait 10 ms before returning

wait100ms – wait 100 ms before returning

wait1000ms – wait 1000 ms before returning

readadc0 – returns a byte in S0 proportional to the voltage at ADC0.

readadc1 – returns a byte in S1 proportional to the voltage at ADC1.

readadc2 – returns a byte in S2 proportional to the voltage at ADC2.

readadc3 – returns a byte in S3 proportional to the voltage at ADC3.

��
��
��
��
��
��
��
�	

��
	�
��
��
��
��

����
���

����������������
�����������������

	�

�	
��
��
��

��������	�
�����
�

�

�

�

�

�

�

 

!

�	

��

��

��

��

� 

��

��

��

��

��

��

��

�	

�!

� 

��

��

��



2

revolution Revolution Education Ltd.     Email: info@rev-ed.co.uk   Web: www.rev-ed.co.uk Version 1.4 03/10 PICAXE_OCR.PMD

OCR / AQA Assembler

To preload the table for the ‘rcall readtable‘ the normal PICAXE ‘table’ command is used e.g.

table (0x08,0x10,0x20,0x40,0x20,0x10)

start: movi s7,0x00

movi s5,0x06

back1: rcall readtable

out Q,s0

movi s3,0xFF

back0: rcall wait1ms

dec s3

jnz back0

inc s7

mov s6,s7

sub s6,s5

jnz back1

jp start

OCR Instruction Set:

Assembler

Command Function

MOVI Sd,n Copy the byte n into register Sd

MOV Sd,Ss Copy the byte from As to Sd

ADD Sd,Ss Add the byte in Ss to the byte in Sd and store the result in Sd

SUB Sd,Ss Subtract the byte in Ss from the byte in Sd and store the resultin Sd

AND Sd,Ss Logical AND the byte in Ss with the byte in Sd and store the result in Sd

EOR Sd,Ss Logical EOR the byte in Ss with the byte in Sd and store the result in Sd

INC Sd Add 1 to Sd

DEC Sd Subtract 1 from Sd

IN Sd,I Copy the byte at the input port into Sd

OUT Q,Ss Copy the byte in Ss to the output port

JP e Jump to label e

JZ e Jump to label e if the result of the last command was zero

JNZ e Jump to label e if the result of the last command was not zero

RCALL s Push the program counter onto the stack to store the return

address and then jump to label s

RET Pop the program counter from the stack to return

to the place the subroutine was called from

SHL Sd Shift the byte in Sd one bit left putting a 0 into the lsb

SHR Sd Shift the byte in Sd one bit right putting a 0 into the msb



3

revolution Revolution Education Ltd.     Email: info@rev-ed.co.uk   Web: www.rev-ed.co.uk Version 1.4 03/10 PICAXE_OCR.PMD

OCR / AQA Assembler

AQA Assembler Notes:
Please see the PICAXE manual for the normal PICAXE download circuit,

which is not changed for AQA use. Please note that, as with most

commercial compilers, hex numbers should be preceded with 0x or $

The registers listed below are predefined.

Hardware ports: PORTA, PORTB, TRISA, TRISB

General purpose registers: B0, B1, B2 etc. to B27

Special function registers: SR, PRE, TMR

SR Bits are: 0 carry flag (C) (use mask ‘ANDW 0x01’)

1 TMR overflow (use mask ‘ANDW 0x02’)

2 zero flag (Z) (use mask ‘ANDW 0x04’)

Note that the PICAXE chip does not operate at the same speed as a PIC programmed in

raw assembler code. However PICAXE is still a very convenient and low cost method to teach

 the AQA A2 requirements.

All the AQA defined assembler commands listed below are included.

The following extra subroutines are also predefined for practical extension work

(note these are not part of the specification and so must not be used in exams):

wait1ms – wait 1 ms before returning

wait10ms – wait 10 ms before returning

wait100ms – wait 100 ms before returning

wait1000ms – wait 1000 ms before returning

readadc0 – returns a byte in b0 proportional to the voltage at ADC0

readadc1 – returns a byte in b1 proportional to the voltage at ADC1

readadc2 – returns a byte in b2 proportional to the voltage at ADC2

readadc3 – returns a byte in b3 proportional to the voltage at ADC3

AQA Instruction Set:

Command Description Flags altered

NOP none No operation

CALL K Call Subroutine

RET none Return from Subroutine

INC R Increments the contents of R (R) <= (R) + 1 Z

DEC R Decrements the contents of R (R) <= (R) - 1 Z

ADDW K Add K to W W <= W + K Z, C

ANDW K AND K with W W <= W & K Z

SUBW K Subtract K from W W <= W - K Z, C

ORW K OR K and W W <= W | K Z

XORW K XOR K and W W <= W ^ K Z

JMP K Jump to K (GOTO) PC <= K

JPZ K Jump to K on zero PC <= K  if Z=1

JPC K Jump to K on carry PC <= K  if C=1

MOVWR R Move W to R (R) <= W Z

MOVW K Move K to W W <= K Z

MOVRW R Move R to W W <= (R) Z

Also included, not part of official specification:

JPNZ K Jump to K on not zero PC <= K  if Z=0

JPNC K Jump to K on not carry PC <= K  if C=0

"#�
"#�
"#�
"#�
"#�
"#�
"#�
"#	

��
	�
�#�
�#�
�#�
�#�

����
���	
����
����
����

����������������
�����������������

	�

�#	
�#�
�#�
�#�

��������	�
������
�

�

�

�

�

�

�

 

!

�	

��

��

��

��

� 

��

��

��

��

��

��

��

�	

�!

� 

��

��

��



4

revolution Revolution Education Ltd.     Email: info@rev-ed.co.uk   Web: www.rev-ed.co.uk Version 1.4 03/10 PICAXE_OCR.PMD

OCR / AQA Assembler

AQA Additional notes:

1) NOP timing loops can be simulated on screen but won't time correctly on the

PICAXE system, but this is not a huge issue as students often use a standard

predefined subroutine like 'wait1ms' to cause a longer delay when experimenting

(note this is not allowed in the exam unless stated in the question). More complex

timer delays using TMR and PRE do work (see examples overleaf). It has been

assumed that loading a value into TMR resets (clears) the timer overflow bit in SR.

2) TRIS does not work on portB on the PICAXE-28X1 as these pins have a fixed

output layout in the PICAXE-28X1 system. However TRISA is fully functional and

gives 8 full bidirectional pins, and so is recommended as the default port to use.

PORTB/TRISB are still available, but can only be used as all outputs (ie the value

passed to TRISB is effectively ignored and left at 0x00). Therefore a simple

workaround is to simply state to students that you must always use TRISB with value

of 0x00 on the PICAXE system! The analogue inputs (ADC0-3) can be used with the

predefined ‘call readadcX’ subroutines if desired for extension exercises.

3) The AQA example notes gives multiple examples of direct writes to register

address numbers and jumps to direct memory locations e.g.

MOVWR 0xA0 ; Move the contents of W into 0xA0

      INC 0xA0 ; Increment the register

This does demonstrate to students how register addresses work but is generally not

used by commercial programmers - it is extremely difficult to remember /

understand multiple register address numbers and is just asking for bugs in the

generated code! In 'commercial assembler' the register would therefore normally be

'named' to an easily understandable name, so the code becomes more readable.

#DEFINE my_counter 0xA0

MOVWR my_counter ; Move the contents of W into 0xA0

INC my_counter ; Increment the register

This is exactly the same, but much easier to understand and program.

In 'PICAXE AQA assembler' direct register numbers are not available and so the same

system of register re-naming is achieved using the symbol command and the pre-

defined general purpose registers b0-b27

symbol my_counter = b1 ; define a user register

MOVWR my_counter ; move the contents of w into my_counter

INC my_counter ; Increment the register

4) JPNZ and JPNC commands are supported as well as JPC and JPZ in the PICAXE

version. However it should be remembered that these are not part of the official

AQA specification and so must not be used in exams.



5

revolution Revolution Education Ltd.     Email: info@rev-ed.co.uk   Web: www.rev-ed.co.uk Version 1.4 03/10 PICAXE_OCR.PMD

OCR / AQA Assembler

Example 1 - Time Delay using predefined routines to flash all outputs on PORTB

; Flash the output pins at a 0.5Hz rate. The outputs

; will be on for one second and off for one second.

Init: movw 0

movwr PORTB ; All PORTB off. Set PORTB before TRISB so pins are in

; known condition before they are converted to outputs

movwr TRISB ; All PORTB as outputs

Main: call wait1000ms ; wait 1 second (1 second = 1000 ms)

movrw PORTB ; Read outputs

xorw 0xFF ; xor’ing each bit inverts it

movwr PORTB ; Set outputs

      jmp Main ; back to start

Example 2 - Time Delay using TMR/PRE to flash all outputs on PORTB

; Flash the output pins at a 0.5Hz rate. The outputs

; will be on for one second and off for one second.

; One second delay is too long, so it is actually made up of 20 lots of 50ms.

symbol mycounter = b0 ; define a register with an easy to use name

Init: movw 00

movwr PORTB ; All PORTB off

movwr TRISB ; All PORTB as outputs

Strt: movw  20 ; Loop 20 x 50ms = 1000ms

      movwr mycounter ; save 20 in mycounter

Main: movw 200 ; 200 x 250us = 50ms delay

movwr PRE

      movw  250

      movwr TMR

; (loading TMR automatically clears the timer overflow bit in status SR)

Lp: movrw SR ; Check the Status Register

; Status will be %xxxxx0x if timer still active

;   or %xxxxx1x if timer expired

      andw  2 ; now mask off the timer expired bit (2 = %00000010 in binary)

; W result will now be 0 if timer still active, W = 0 so Z bit = 1

;  or 2 if timer expired, W = 2 so Z bit = 0

      jpz   Lp ; If Z set (Z=1) then timer is still active so loop back up

dec   mycounter    ; Decrement the value of mycounter

; Z bit now = 1 if the decrement result is 0

      jpz   Tog ; Looped 20 times? if Z bit is 1 we have finished and so goto Tog

jmp Main ; Z bit is 0 so mycounter is not 0, so not done 20 yet so loop back up

Tog:  movrw PORTB ; Read outputs

xorw 0xFF ; xor’ing each bit inverts it

movwr PORTB ; Set outputs

      jmp Strt ; Start another 1 second loop



6

revolution Revolution Education Ltd.     Email: info@rev-ed.co.uk   Web: www.rev-ed.co.uk Version 1.4 03/10 PICAXE_OCR.PMD

OCR / AQA Assembler

Example 3 - Demonstrate use of C carry bit

; Find the largest number that when 123 is added to

; it does not exceed 255. The result is displayed on

; the Port B output pins as a binary pattern.

symbol mynumber = b1 ; define a register with an easy to use name

Init: movw 0

movwr PORTB ; All PORTB off

movwr TRISB ; All PORTB as outputs

movwr mynumber ; also reset mynumber to 0

Test: movrw mynumber ; Get the number and ...

addw 123 ; ... add 123 to it

      jpc   Got ; Overflowed if C=1, so result is greater than 255

inc mynumber ; Not overflowed so try the next number

jmp Test

Got: dec mynumber ; This number caused overflow so  ...

; ... result of experiment is actually one less

movrw mynumber ; Get correct result

movwr PORTB ; Put the result to the output pins

; **** optionally use the PICAXE debug command to show mycounter (b1) value

; debug

; ****

Done: jmp Done ; Finished - ever lasting loop


